If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-161=0
a = 1; b = 0; c = -161;
Δ = b2-4ac
Δ = 02-4·1·(-161)
Δ = 644
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{644}=\sqrt{4*161}=\sqrt{4}*\sqrt{161}=2\sqrt{161}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{161}}{2*1}=\frac{0-2\sqrt{161}}{2} =-\frac{2\sqrt{161}}{2} =-\sqrt{161} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{161}}{2*1}=\frac{0+2\sqrt{161}}{2} =\frac{2\sqrt{161}}{2} =\sqrt{161} $
| 2x-5(x-2)=-5+2x-15 | | 2x-4(x-5)=-7+4x-15 | | 2(x+1)=x+3+x | | 0=24+12m | | 3x+13x-6=4(4x+7) | | 4(x-6)+8=6x-2 | | 3x-13x-6=4(4x+7) | | x•x+2x-3=0 | | 2x+48=-9(x+2) | | 10x+6=10x-1 | | -8w+6(w+8)=36 | | 5x+65=170 | | 12x=571*21+2x | | 2x²+13x+20=0 | | (x+7)=(2x+2) | | 2v-7=-11 | | (x+7)=(2x+2 | | -6x+8=-58+8 | | 4x+12x-7=16x+20 | | 16x=24-2x | | 5x-3x-9=8+4x+1 | | 4/5=x-1/3 | | 4×(x+6)-3x-2=5×(2-2x)-x | | 11x-12=x+6 | | 5x-30+4=7x=10 | | 5+3(x-1)=3x+14-(x+15) | | 5+5n=10+2n | | n+(-16)=65 | | 7x+6=4x=9 | | −35x−2=−176.75 | | x+x+28=180 | | -2r=50 |